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Magnetic susceptibility measurements were made on poly-
crystalline samples of the system Sm(12x)GdxTiO3

(0.104x41.0) and on single-crystal GdTiO3. A systematic
decrease in the magnetic ordering temperature with increasing
x < 0.5, falling below 5 K at x 5 0.5 and increasing with x > 0.5,
was interpreted to signal a competition between antiferromag-
netic and ferromagnetic coupling among itinerant p* electrons of
the TiO3 array. In a 5eld H > 1 kOe, GdTiO

3
approached satu-

ration with a moment of 6 lB/formula unit, consistent with
collinear-spin ferrimagnetism. Semicovalent exchange was in-
voked to justify the observed antiferromagnetic coupling between
Gd(III) and Ti(III) spins. However, the M+H curves taken in
$50 kOe were unusual; they were essentially anhysteretic with
no measurable remanence or coercivity, but a small ferromag-
netic component observed in 20 Oe was typical of a weak,
canted-spin ferromagnetism on an antiferromagnetic TiO3 ar-
ray. The lack of hysteresis and the approach to a ferrimagnetic
saturation in high magnetic 5elds was found for all x for small as
well as high applied 5elds. Although the TiO3 array orders
antiferromagnetically below a critical temperature, a ferromag-
netic moment was induced on the TiO3 array by an applied
magnetic 5eld and by the molecular 5eld associated with antifer-
romagnetic Gd+Ti interactions. The applied H required to satu-
rate the ferromagnetic moment on the TiO3 array decreased with
increasing x. ( 2000 Academic Press

Key Words: magnetic order; magnetic exchange; exchange
inversion; itinerant-electron magnetism.

INTRODUCTION

The structural and physical properties of the octahedrally
distorted (Pnma) titanates RTiO

3
(R"La}Lu, Y, and mix-

tures thereof ) exhibit unusual physical properties (1}8). The
single d electron of the octahedral Ti(III) site occupies
a narrow n* band. All the oxygen stoichiometric titanates
are magnetic insulators; the bandwidth is on the narrow side
of the Mott}Hubbard transition. The energy gap between
the Ti(IV)/Ti(III) and Ti(III)/Ti(II) redox bands increases
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E-mail: jbgoodenough@mail.utexas.edu.

619
from 0.01 to 0.22 eV on going from La to Y [1], which is
consistent with a narrowing of the n* band as the size and
basicity of the R(III) ion decreases (9). However, there is no
evidence of a cooperative Jahn}Teller orbital ordering or of
an important contribution to the magnetic moment and
crystalline anisotropy from a localized-electron orbital
angular momentum of the TiO

3
array in any of the titanates

from antiferromagnetic LaTiO
3

to ferromagnetic YTiO
3

and LuTiO
3
. They all appear to exhibit itinerant-electron

magnetism on the TiO
3

array. Therefore, it is worth noting
that antiferromagnetic LaTiO

3
(type G order) exhibits

a weak, canted-spin ferromagnetic moment due to an anti-
symmetric exchange with a Dzyaloshinsky vector, D,
parallel to the a axis in Pnma (b axis in Pbnm) of the
orthorhombic unit cell.

Of particular interest for this study is a transition from
antiferromagnetic to ferromagnetic coupling in the TiO

3
array as x increases in the system La

(1~x)
Y

x
TiO

3
(3, 5).

Since the atomic orbitals contributing to the n* bands are
less than one-quarter "lled, a ferromagnetic order is pre-
dicted unless the width =n of the n* is too broad for the
intraatomic exchange interaction to raise the occupied
states of the minority-spin band completely above the Fermi
energy. A transition from band antiferromagnetism to band
ferromagnetism has been anticipated for decreasing width of
a band derived from degenerate orbitals that is less than
one-quarter "lled (9). On the other hand, the La

(1~x)
Y

x
TiO

3
system represents the only known experimentally demon-
strated example of such a transition occurring in the ab-
sence of coexisting localized atomic moments. However, this
fact was not recognized because the observed decrease with
increasing x of the antiferromagnetic NeH el temperature, ¹

N
,

was assumed to signal the presence of localized d1 con"g-
urations in the antiferromagnetic compositions (10). Indeed,
for a band derived from half-"lled orbitals as in LaCrO

3
or

LaFeO
3
, ¹

N
increases unambiguously with the strength of

the superexchange interactions between localized-electron
spins on neighboring atoms, but decreases with increasing
bandwidth for itinerant-electron antiferromagnetism. How-
ever, this prediction does not apply where the band is
derived from degenerate orbitals that are less than
0022-4596/00 $35.00
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FIG. 1. X-ray powder di!raction pattern for GdTiO
3

at room temper-
ature.
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one-quarter "lled. The system La
(1~x)

Y
x
TiO

3
demonstrates

that, in this case, the ¹
N

for band antiferromagnetism de-
creases with narrowing bandwidth to near zero at the cross-
over from antiferromagnetic to ferromagnetic order. On the
other hand, the ferromagnetic Curie temperature, ¹

C
, in-

creases with decreasing bandwidth as expected for band
ferromagnetism.

Previous experiments (3) have suggested that a similar
transition on the TiO

3
array occurs in the presence of

rare-earth localized atomic moments in the system
Sm

(1~x)
Gd

x
TiO

3
. In this paper, we demonstrate a systematic

lowering of ¹
N

with x(0.5 and raising of the magnetic-
ordering temperature with x'0.5 in this system; long-
range magnetic order disappears above 5 K at the crossover
composition x"0.5. We also report a study of a single
crystal of GdTiO

3
that explores the evolution of magnetic

order with the strength of an applied magnetic "eld. We
compare the e!ect on the magnetic-ordering temperature of
increasing the bandwidth=n of GdTiO

3
by applying hyd-

rostatic pressure and by substituting Sm.

EXPERIMENTAL PROCEDURES

The members of the solid solution system Sm
(1~x)

Gd
x

TiO
3

(0.104x41.00, *x"0.10) investigated in this study
were prepared by conventional solid-state methods.
Stoichiometric amounts of Gd

2
O

3
(Alfa, 99.99%), Sm

2
O

3
(Alfa, 99.99%), and Ti

2
O

3
(Cerac, 99.99%) were mixed inti-

mately in acetone in a ball mill for approximately 12 h. The
rare-earth oxides were calcined at 10003C for at least 12 h to
remove any carbonates or hydroxides prior to weighing.
For each composition, the powder was made into 1-in.
pellets, placed into an open molybdenum crucible, and "red
in a vacuum furnace (&10~5Torr) for 10}12 h at 14003C.

A single crystal of GdTiO
3

was grown by the #oating-
zone method in an NEC SC-M35HD double-ellipsoid im-
age furnace. Polycrystalline GdTiO

3
prepared as described

above was made into seed and feed rods that were sub-
sequently sintered in the vacuum furnace at 12003C for 10 h.
The single crystal was grown in a #owing 10% H

2
}Ar gas

mixture (3.0 L/min #ow rate). The size of the crystal ob-
tained was &1 cm in length]4 mm in diameter; it was
subsequently oriented along the major axes by means of
Laue photography.

Phase purity determinations for all compositions were
performed with X-ray powder di!raction and CuKa radi-
ation in a Philips Norelco step scanning di!ractometer. For
the determination of the unit-cell constants, data were col-
lected with a silicon standard in 0.023 steps over a two-theta
range of 103}803 with a count time of 10 s per step. The
re"nement of the unit-cell constants was performed with
a least-squares method in the program JADE.

The oxygen content for each composition was determined
by thermogravimetric analysis with a Perkin}Elmer TGA7
system from the weight gain observed when oxidized in
#owing air at 10003C. The oxygen content per formula unit
was determined to be 3.02$0.02 based on the nominal
content of rare-earth and transition-metal atoms with the
exception of the x"0.30 and 0.40 compositions, which were
slightly more oxidized with values of 3.04$0.02.

Direct current susceptibility and magnetization measure-
ments were carried out with a SQUID magnetometer
(Quantum Design MPMS). Typical sample sizes were
&20}30 mg with an applied "eld of 2.5 kOe. Measure-
ments were performed on heating after cooling in zero "eld
(ZFC) and the measuring "eld (FC). In addition, complete
hysteresis loops were obtained at 5 K in a magnetic "eld
range of $50 kOe.

High-pressure ac magnetic-susceptibility measurements
were made with a home-built apparatus (J.-S. Zhou, unpub-
lished). Data were taken under several applied pressures
ranging from 1 bar to &22 kbar with an applied "eld of
10 Oe.

RESULTS

I. Structure. The X-ray powder pattern for GdTiO
3

(Fig. 1) is typical of those found for all compositions of the
Sm

(1~x)
Gd

x
TiO

3
system. All the peaks could be indexed

with a perovskite structure of orthorhombic GdFeO
3

in the
standard Pnma setting; no impurity phase could be detected.
The unit-cell constants obtained by a least-squares re"ne-
ment with a silicon standard are shown in Fig. 2 and
tabulated in Table 1. The cell parameters for polycrystalline
GdTiO

3
are in good agreement with those previously re-

ported: a"5.393 As , b"5.691 As , and c"7.664 As (2). The
data reveal a systematic decrease in the unit-cell parameters
and volume with increasing content, x, of the smaller
Gd(III) ion.



FIG. 2. Unit-cell constants vs x in Sm
(1~x)

Gd
x
TiO

3
.

TABLE 1
Unit-Cell Constants of Sm(12x)GdxTiO3 System (0.004x4

1.00) from Least+Squares Re5ned Data with Silicon Standard

Compound a (As ) b (As ) c (As ) </(As 3)

GdTiO
3

5.3954(16) 5.6955(18) 7.6642(22) 235.52(21)
Gd

0.90
Sm

0.10
TiO

3
5.4109(7) 5.6911(10) 7.6849(12) 236.65(11)

Gd
0.80

Sm
0.20

TiO
3

5.4124(9) 5.6959(11) 7.6838(14) 236.88(13)
Gd

0.70
Sm

0.30
TiO

3
5.4216(10) 5.6808(11) 7.6959(14) 237.02(13)

Gd
0.60

Sm
0.40

TiO
3

5.4231(10) 5.6880(9) 7.6982(12) 237.46(12)
Gd

0.50
Sm

0.50
TiO

3
5.4325(50) 5.6947(29) 7.6975(9) 238.13(36)

Gd
0.40

Sm
0.60

TiO
3

5.4392(21) 5.6855(20) 7.7055(26) 238.29(22)
Gd

0.40
Sm

0.60
TiO

3
5.4329(12) 5.6848(13) 7.7084(15) 238.07(15)

Gd
0.30

Sm
0.70

TiO
3

5.4395(19) 5.6741(21) 7.7114(25) 238.01(25)
Gd

0.20
Sm

0.80
TiO

3
5.4459(13) 5.6786(14) 7.7122(16) 238.50(17)

Gd
0.10

Sm
0.90

TiO
3

5.4578(41) 5.6795(24) 7.7248(7) 239.45(30)

FIG. 3. (a) s vs ¹ and (b) 1/s vs ¹ for GdTiO
3

at 2.5 kOe.
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II. Magnetic data. Figure 3a shows the dc susceptibility
taken on single-crystal GdTiO

3
along the three major axes

in a "eld of 2.5 kOe. In this "eld, the s~1 versus ¹ curves of
Fig. 3b are typical of ferrimagnetic behavior with a Weiss
constant h+!25K, a Curie temperature ¹

C
K29(1)K,

and little magnetocrystalline anisotropy in the paramag-
netic phase. The ¹

C
is reduced from the value of 32(1) K

obtained for the polycrystalline sample; it appears that
a slight oxidation occurred during crystal growth.

Moreover, the M}H curves for single-crystal GdTiO
3

taken at 5K along the three major crystallographic axes
(Fig. 4) show a saturation moment of 6 k

B
/formula unit in

agreement with a previously reported polycrystalline value.
Based on this saturation moment, a spin-only ferrimagnetic
order has been proposed in which the Gd(III) : 4 f 7 and
Ti(III) : 3d1 spins are coupled antiferromagnetically to one
another. However, although this collinear ferrimagnetic
model appears to apply in a saturation magnetic "eld, it
cannot account for the lack of any hysteresis in the M}H
curves, which have zero remanence and coercivity.

To investigate this unusual magnetic behavior, the "eld
dependence of the magnetic susceptibility was studied. The



FIG. 4. Magnetization versus applied "eld for single-crystal GdTiO
3
.
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Weiss constant, h+!25K, is independent of the applied
"eld. Figure 5 shows a divergence in the measuring "eld of
20 Oe between the curves taken after ZFC and FC. A sim-
ilar behavior was found for the antiferromagnetic com-
pounds NdTiO

3
and SmTiO

3
, both of which exhibit

a weak, canted-spin ferromagnetism (8, 11). However, at
higher "elds the divergence of Fig. 5 disappears. With both
low and high maximum "elds, the M}H curves were with-
out hysteresis within the experimental error of our SQUID
magnetometer. Where M reaches saturation, the s"M/H
curves of Fig. 6 decrease with increasing H. The "eld at
which saturation is achieved is strongly dependent on the
crystal axis along which the "eld H is applied. The a axis is
the direction of hard magnetization and the c axis is the easy
FIG. 5. s vs ¹ for single-crystal GdTiO
3

at low "eld showing diver-
gence between ZFC and FC data.
magnetization direction, as is also evident in the M}H
curves of Fig. 4. Figure 6 is representative of all composi-
tions x50.4.

The high-pressure ac susceptibility of single-crystal
GdTiO

3
is shown in Fig. 7. A small, systematic decrease in

the magnetic-ordering temperature occurs with increasing
applied pressure from 1 bar to 20 kbar; it falls by 1 K in this
pressure range.

Figure 8 shows the dc susceptibility taken at 2.5 kOe for
the polycrystalline samples of the system Sm

(1~x)
Gd

x
TiO

3
;

the M versus H curves taken at 5 K are shown in Fig. 9.
Antiferromagnetic SmTiO

3
displays a weak, canted-spin

ferromagnetism in an applied "eld H. Nevertheless, as in the
case of GdTiO

3
, all the M}H curves taken over the

range$50 kOe exhibit no apparent hysteresis; the satura-
tion moment increases monotonically with the Gd concen-
tration, x, and the saturation "eld decreases. On the other
hand, the long-range magnetic-ordering temperature de-
creases systematically with x(0.5, falling below 5 K at
x"0.5, but increases with x in the range 0.5(x(1.0 (see
Fig. 10). Comparison with the La

(1~x)
Y

x
TiO

3
system would

suggest that a crossover from predominantly antiferromag-
netic to predominantly ferromagnetic interactions within
the TiO

3
array occurs near x"0.5.

DISCUSSION

The GdTiO
3

saturation magnetization of 6 k
B
/formula

unit clearly shows the existence of an antiferromagnetic 903
Gd}O}Ti superexchange interaction. The Gd(III) : 4 f 7 en-
ergy level lies below the top of the O:2p6 valence bands, so
the dominant virtual charge transfer in the superexchange
interaction is from the TiO

3
array to the empty Gd-5d band

having its spin parallel to the localized spin S"7
2

of the
Gd(III) : 4 f 7 con"guration. Conservation of spin angular
momentum during charge transfer would dictate a fer-
romagnetic interaction if transfer of a n* electron were
preferred. Therefore, we must consider an alternate superex-
change interaction. We note that the Gd-5d band p-bonds
with the O-2p orbitals that n-bond with the Ti(III) ions. The
Gd:5d}O:2p covalent bonding stabilizes the O-2p spin state
that is parallel to the Gd spin, which leaves the O-2p spin
state that is antiparallel to the Gd spin to n-bond more
strongly with the Ti(III) ions. This example of semicovalent
superexchange postulated years ago (12) is interesting be-
cause, in this case, it has a spin opposite to that of a conven-
tional superexchange and is dominant. For 1803 M}O}M
interactions, the two contributions have the same sign so
that it is not possible to distinguish experimentally their
relative magnitudes. Semicovalent exchange is normally
smaller than conventional superexchange as it involves
a two-electron transfer from the oxygen atom. However, in
GdTiO

3
it is particularly strong because of the large in-

traatomic exchange coupling between a 5d electron spin and



FIG. 6. s vs H and M vs H curves for single-crystal GdTiO
3

at 5 K.
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the localized spin S"7
2

of the Gd(III) : 4 f 7 con"guration;
also the large overlap of the Gd-5d and O-2p orbitals gives
the Gd}O bond a signi"cant covalent component.

Antiferromagnetic order in GdAlO
3

shows that the
Gd}Gd interactions are antiferromagnetic (13), but they are
very weak. The magnetic interactions between the n* elec-
trons of the TiO

3
array are dominant even though they
FIG. 7. s
!#

vs applied pressure for single-crystal GdTiO
3

along the c axis.
appear to be weakened by competition from antiferromag-
netic to ferromagnetic interactions, particularly at x+0.5 in
Sm

(1~x)
Gd

x
TiO

3
. In the titanates with heavier rare-earth

ions (TbTiO
3
, DyTiO

3
, and HoTiO

3
), the n* electrons are

ferromagnetically aligned and the rare-earth spins have
FIG. 8. 1/s vs ¹ for Sm
(1~x)

Gd
x
TiO

3
system.



FIG. 9. Magnetization versus applied "eld for the Sm
(1~x)

Gd
x
TiO

3
system.
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a canted C-type antiferromagnetic arrangement (C
y
F
x

or
C

x
F
y
) (14, 15). In the transitional compound GdTiO

3
, the

ferromagnetic interactions between n* electrons are weaker,
and the Ti(III) spins may be ordered antiferromagnetically
where the antiferromagnetic interactions are competitive.
Our problem is to understand how these competing interac-
tions give rise to the observed magnetic behavior.

First, we note that there is no orbital angular momentum
in the ground-state 4 f 7 con"guration, and itinerant n*
electrons have an orbital angular momentum that is strong-
ly reduced from that of a localized-electron con"guration.
FIG. 10. ¹
C
, ¹

N
vs x in Sm

(1~x)
Gd

x
TiO

3
. aFrom Ref. (8).
Consequently, the magnetocrystalline anisotropy is small,
and the principal impediment to rotation of the spins in
a magnetic "eld is the interatomic exchange "eld. In
SmTiO

3
, the antiferromagnetic interactions among the n*

electrons are strong enough to resist a signi"cant canting of
the Ti(III) spins even in a "eld of 50 kOe. However, in
GdTiO

3
the Gd spins are rotated from antiferromagnetic to

ferromagnetic alignment in a "eld of 1 kOe at 5 K, and
ferromagnetic alignment of the Gd spins appears to align
the Ti(III) spins in an opposite direction. A hard a axis
(Pnma) is consistent with a Dzyaloshinsky vector, D, paral-
lel to the a axis; antisymmetric exchange stabilizes the spins
in the b}c plane.

Lack of a remanence in the M}H curves indicates an
antiferromagnetic ground state in GdTiO

3
in zero applied

"eld, but a weak, canted-spin ferromagnetic component is
induced by a magnetic "eld, applied or molecular, on the
TiO

3
array. The data in Fig. 9 show that at 5 K the Gd

moments become aligned in the direction of the applied
H "eld even in the x"0.5 sample having no observable
long-range magnetic order above 5 K in zero applied "eld.
For a Gd concentration x50.8, saturation is approached
in a polycrystalline sample by H"1 kOe; ferromagnetic
interactions in the TiO

3
array would favor an approach to

ferrimagnetic saturation in a lower applied "eld. The avail-
able data do not provide information on the character of the
antiferromagnetic order of GdTiO

3
in zero applied "eld.

Both the Gd and the Ti subarrays of GdTiO
3

must be
antiferromagnetically ordered, but the spins of each subar-
ray are rotated smoothly in an H "eld to form a collinear-
spin ferrimagnetic array in a "eld of only 1 kOe. The prob-
lem is to understand how this is possible.

With x40.5 in Sm
(1~x)

Gd
x
TiO

3
, the Gd subarray ap-

pears to be paramagnetic at 5 K, but coupled antiferromag-
netically to any canted-spin ferromagnetism of the TiO

3
array. As an applied H "eld increases, the Gd spins become
more aligned, and the Gd}Ti interactions correspondingly
increase the antiferromagnetically aligned canted-spin fer-
romagnetic moment of the TiO

3
array. A larger ferromag-

netic moment on the TiO
3

array would feed back a larger
molecular "eld to align the Gd spins.

For x'0.5, the magnetic interaction on the TiO
3

array
appears to change from predominantly antiferromagnetic to
predominantly ferromagnetic, but the intraatomic exchange
is not strong enough to remove fully the spin degeneracy of
the n* band at any value of x. In this case, we should expect
either a progressive increase with ¹

C
in the ferromagnetic

component of the n* electrons or the appearance of a spiral-
spin con"guration. Moreover, the Gd}Ti interactions in-
crease in strength with the concentration of Gd(III) ions.
Therefore, saturation of a collinear, ferrimagnetic spin con-
"guration occurs in a lower applied H as x increases. The
lack of any hysteresis in the M}H curves shows anti-
ferromagnetic order at H"0, which suggests that a
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spin-density wave (SDW) is stabilized on the TiO
3

array.
A SDW would weaken the Gd}Ti interactions to render the
Gd array paramagnetic. However, alignment of the Gd
spins in an applied H "eld induces a molecular "eld on the
TiO

3
array that apparently stabilizes a ferromagnetic com-

ponent on the TiO
3

array oriented antiparallel to the Gd
magnetization, thereby increasing the Gd}Ti interactions
and hence the Weiss molecular "eld at the TiO

3
array in

a positive feedback. The greater the concentration of
Gd(III) ions, the stronger the molecular "eld exerted by the
Gd on the TiO

3
array; and for x50.8, a full ferrimagnetic

moment is achieved at relatively low "elds, H+1 kOe.

CONCLUSIONS

The antibonding electrons of the TiO
3

array are not
localized Ti(III) : d1 electrons; they occupy an itinerant elec-
tron n* band on the strong-correlation side of the
Mott}Hubbard transition. Therefore there is no
cooperative Jahn}Teller deformation of the Ti(III) octahed-
ral sites, and the orbital angular momentum of the itinerant
n* electrons is strongly suppressed.

Single-crystal GdTiO
3

has been shown to exhibit a satu-
ration moment of 6 k

B
/formula unit in large magnetic "elds.

We interpret this moment to signal a collinear-spin fer-
rimagnetism in "elds H'1 kOe. To justify an antifer-
romagnetic superexchange interaction between Gd(III) and
Ti(III) spins, we were forced to conclude that semicovalent
exchange associated with the O-2p electrons that p-bond
with the Gd and n-bond with the Ti dominates over virtual
charge transfer of a n* electron of the TiO

3
array to the

empty Gd-5d band.
Magnetic-susceptibility measurement of single-crystal

GdTiO
3
showed little anisotropy in the paramagnetic phase

and identi"ed, below the magnetic-ordering temperature,
the orthorhombic a axis (Pnma) as a hard magnetization
axis with little magnetocrystalline anisotropy in the b}c
plane. In the absence of a signi"cant orbital angular mo-
mentum on the Gd(III) : 4 f 7 con"guration or for the itiner-
ant n* electrons, a planar easy axis may be associated with
an antisymmetric term with a Dzyaloshinsky vector along
the a axis.

Although the magnetization M of GdTiO
3

saturates in
a "eld of 1 kOe, the M}H curves show little hysteresis; there
is almost no remanence or coercivity. However, the presence
of a weak ferromagnetic moment was observed in low
(&20Oe) magnetic "elds, which shows the presence of
a weak canted-spin ferromagnetism as is found in the TiO

3
arrays of other RTiO

3
perovksites with an antiferromag-

netic TiO
3

sublattice.
On the other hand, the Sm

(1~x)
Gd

x
TiO

3
system has been

shown to exhibit a long-range magnetic-ordering temper-
ature that decreases with increasing x(0.5, falling below
5 K at x"0.5, and increases with x'0.5. Observation of
a change from antiferromagnetic order in the TiO
3

sublat-
tice of the RTiO

3
family with R"La to Sm to ferromag-

netic order with R"Tb}Lu places GdTiO
3

close to the
transition between the two types of magnetic order on the
TiO

3
array. By analogy with the La

(1~x)
Y

x
TiO

3
system,

which shows a lowering (disappearance) of long-range mag-
netic order on the TiO

3
array in the transition region, we

postulate that a transition from predominantly antifer-
romagnetic to predominantly ferromagnetic interactions
among n* electrons occurs near x"0.5 in the
Sm

(1~x)
Gd

x
TiO

3
system. An antiferromagnetic order on the

TiO
3

array of GdTiO
3

in zero magnetic "eld indicates that
the intraatomic exchange "eld remains too weak to remove
completely the spin degeneracy of the n* band, so a SDW is
stabilized in zero applied "eld H. However, stabilization of
ferromagnetic order on the TiO

3
array is accomplished by

the Weiss molecular "eld associated with ordering of the
Gd(III) spins in an applied magnetic "eld, and a positive
feedback allows stabilization of a collinear-spin ferrimag-
netism in only 1 kOe in GdTiO

3
.

Finally, the decrease in magnetic-ordering temperature
with increasing pressure is consistent with itinerant n*
electrons.

We dedicate this paper to J. M. Honig who has contrib-
uted much to the narrow-band problem in transition-metal
oxides.
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